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Abstract

This paper focuses on a subclass of box-constrained, non-linear optimization problems. We are particularly concerned with settings
where gradient information is unreliable, or too costly to calculate, and the function evaluations themselves are very costly. This encour-
ages the use of derivative free optimization methods, and especially a subclass of these referred to as direct search methods. The thrust of
our investigation is twofold. First, we implement and evaluate a number of traditional direct search methods according to the premise
that they should be suitable as local optimizers when used in a metaheuristic framework. Second, we introduce a new direct search
method, based on Scatter Search, designed to remedy the lack of a good derivative free method for solving problems of high dimensions.
Our new direct search method has convergence properties comparable to those of existing methods in addition to being able to solve
larger problems more effectively.
� 2008 Elsevier B.V. All rights reserved.
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1. Introduction

The important problem of minimizing non-linear functions can be handled in a large number of ways. Typically, tech-
niques based on Newton’s method can be applied successfully, by using gradient and Hessian information to calculate a
good step and gradually move towards a (local) optimum of the function being minimized ([27] is a good introduction to
these methods). However, sometimes Newton based approaches can be the wrong choice. This can be the case if: (1) the
function evaluations are inaccurate, (2) the derivatives of the function are unavailable or unreliable, or (3) the function is
not smooth [36,39]. In these cases, a better choice can be to rely on so-called derivative free methods, i.e., methods that do
not explicitly use derivatives of the function being optimized.

Derivative free methods can be divided in two groups. One group includes methods that, instead of using the gradient
directly, approximates the derivatives by building a model of the function based on function evaluations [6]. This requires
that numerical function values are available, and the task of building a representative model can be difficult if the function
evaluations are noisy. The second group of methods includes direct search methods, which are methods that do not try to
use gradient information at all (i.e., they do not make any attempt at approximating the gradient) and that only require
ordinal information about function values [22,36]. Direct search methods are hence deemed suitable for problems involving
simulation-based optimization or optimizing non-numerical functions, as well as, in practice, problems involving non-
smooth or discontinuous functions [19].
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In this paper, the focus is on the use of direct search methods to find local optima. Many direct search methods are
simple in nature, and only undertake to find a local optimum (close to the starting point of the search). Thus, they are
often used in hybrid methods for global optimization, e.g., as in [4,5,13–15,30]. However, quite often the choice of which
direct search method to use is left unjustified, or, else only a few alternative methods are examined. At the same time, one of
the most well-known and extensively used methods, the Nelder–Mead [26], can perform remarkably poorly both from a
theoretical and practical point of view [12,22].

One issue that is often mentioned in discussions about direct search methods (as well as other derivative free methods), is
their tendency to perform well only on problems with few dimensions and to falter when the number of dimensions grows
[1,6,17,19,36]. This motivates the work presented here, in which different direct search methods (as well as two other deriv-
ative free methods) are evaluated based on their ability to quickly find local optima of high-dimensional functions.

All test problems used in the computational experiments presented later in this paper can be seen as instances of the
following model:

min
x2½‘;u��Rn

f ðxÞ; ð1Þ

where f : Rn ! R, and, ‘; u 2 Rn. Strictly speaking, however, in accordance with the definition of direct search methods
proposed in [22], several variations of this problem can be tackled. For example, the objective function need not be numer-
ical (i.e., one could have f ðxÞ : Rn ! R, seeking to determine x to minimize jfy : f ðyÞ 6 f ðxÞgj, where 6 defines an order
on R) In addition, the functions that are optimized can contain noise. None of the solution methods examined in this work
are specifically adapted to exploit box-constraints (x 2 ½‘; u�), although we make reference to such constraints as a conve-
nient foundation for generating an initial solution point. For the purpose of this paper, the formulation (1) will thus suffice,
even though, unless otherwise stated, the methods discussed are applicable in the wider context mentioned above.

The remainder of this paper is as follows. In Section 2 we examine several traditional and some lesser known direct
search methods (as well as two other derivative free methods – one mainly because it is claimed to be effective for problems
with many variables). Then, in Section 3 we develop a direct search based on ideas from Scatter Search [9,20] and conduct
computational tests that demonstrate the efficacy of our method in this setting. Finally, conclusions and suggestions for
future research are discussed in Section 4.

2. Traditional direct search methods

Our goal in this section is to examine and evaluate eight different methods (see Table 1) according to their ability to find
local optima of functions having many dimensions. The motivation for this is that these methods are frequently used as
subsolvers in various global optimization methods, and their efficiency in finding local optima quickly is of interest to prac-
titioners that implement such global methods. Table 2 gives some references for each method (their original source and/or
other references where the method is used or discussed), and their classification within the realm of direct search methods.
See [22] for one suggested taxonomy of direct search methods. The parameters defined for these methods are given the
standard values found in the literature. Note that two of the methods, HPS and SPSA, are not labeled as direct search
methods since they require a numerical objective function, and are thus less general than the other methods.

For some of these solution methods there exists a theory of convergence. Early work can be found in [38], where the
author proves that the limit of the infimum of the norm of the gradient at the best vertex at iteration k converges to 0
as k !1 for MDS, CS, and HJ, given that the function is continuously differentiable. Although this does not apply to
the functions for which direct search methods are the preferred approach [19], the assumption of continuous differentia-
bility sometimes holds in restricted areas of the function domain at hand. In addition, convergence analysis of these meth-
ods go much further, and a hierarchy of results based on the degree of smoothness can be found in [2]. At the other end of
the scale some of the direct search methods have negative convergence results, such as NM, [12]. In this paper, the emphasis

Table 1
Direct search and other methods from the literature

Method Full name

NM Nelder–Mead
MDS Multi-directional search
CS Compass search
HJ Hooke and Jeeves
ROS Rosenbrock’s algorithm (with improvements by Palmer)
SW Solis and Wets’ algorithm
HPS Heuristic pattern search
SPSA Simultaneous perturbation stochastic approximation
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is not on the theoretical convergence properties of the different methods, but rather on their performance as established by
empirical evaluation.

To test the methods, a set of 12 well-known test functions has been selected, as well as two additional functions (given in
Table 3). They have the property that all minima have the same value (the optimal value), which makes it easier to perform
comparisons between the solution methods. In a situation where a method may converge to local optima with different
values, it is necessary to decide whether it is preferable to converge quickly to a poor local optimum or slowly to a good
local optimum. Function 44 in Table 3 has been modified (*) as described in Appendix A. Function 51 in Table 3 (**) has a
modified box to avoid a second local optimum. The new box is ½�4; 1:5� � ½�2; 4� for the two-dimensional case. Functions
60 and 61 (***) are described in Appendix A.

The drawback of using the most well-known test functions, is that the functions usually lack certain properties that
would make them interesting for derivative free methods (and direct search methods in particular). To be specific, they
have known derivatives, and there is no noise, discontinuities, or other features that make the use of direct search methods
pertinent. Still, these functions are among the ones that are almost always used when comparing even such methods as are
implemented here. Notably, only functions 44, 60, and 61, out of which the latter two are formulated especially for this
paper, have discontinuities or an undefined gradient. However, one would expect that the performance of the direct search
methods does not depend too much on whether the functions are smooth, and have defined gradients, since this informa-
tion is not used by the solution methods. Our subsequently reported computational findings support this expectation. On
the other hand, the performance of Newtonian methods as well as other methods relying on derivative information might
be expected to suffer, though we do not know of any tests of this proposition.

For the purpose of this work, some of the functions are modified to generalize into functions of higher dimensions. This
is accomplished by introducing higher-dimensional terms that take the form of the lower-dimensional terms of the original
function, by extending their definition to encompass a higher dimension. For instance, for the classical (two-dimensional)
Rosenbrock function

f ðxÞ ¼ 100ðx2 � x2
1Þ

2 þ ð1� x1Þ2; ð2Þ

the multi-dimensional generalization becomes

Table 3
List of functions

No. Name Source

1 Branin [21]
7 Booth [21]
8 Matyas [21]
11 Rosenbrock [21]
12 Zakharov [21]
24 Trid [21]
28 SumSquares [21]
39 Sphere [21]
41 Schwefel’s Problem 1.2 (F2) [35]
42 Rotated High Conditioned Elliptic Function (F3) [35]
44 Modified Schwefel’s Problem 2.6 (F5) [35] (*)
51 McCormic [24] (**)
60 Staircased Rosenbrock (***)
61 Staircased LogAbs (***)

Table 2
Classification of the methods considered

Methods References Classifications

NM [26,39] Simplex search
MDS [37,39] Simplex search/pattern search
CS [7,19] Pattern search/generating set algorithm
HJ [7,16] Pattern search
ROS [28,29] Method with adaptive search directions
SW [32,30] Stochastic direct search
HPS [13] Derivative free method (not a direct search)
SPSA [33,34] Derivative free method (not a direct search)
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f ðxÞ ¼
Xn=2

i¼1

100ðx2i � x2
2i�1Þ

2 þ ð1� x2i�1Þ2; ð3Þ

where n ¼ 2k for k integer. Note that for the Rosenbrock function in particular, another generalization is sometimes pro-
posed that does not retain the property of having only one local optimum [31].

For the ease of conducting computational experiments, all the functions are shifted so that the optimum has a value of 0,
and one can thus use a stopping criterion in which the search is terminated whenever an x is found such that f ðxÞ < �,
where � is taken, as is customary in the literature, to be 0.001. In addition, a limit on the number of function evaluations
is set to 50,000, terminating the search when this number of evaluations is reached.

2.1. Computational results

We performed computational tests using the eight methods of Table 1 on the 14 functions in Table 3, with the number of
dimensions ranging from 2 to 512. Each combination of method/function/size is repeated 10 times with different (random)
starting points. All methods are initialized by first creating a simplex of points. For d ¼ miniðui � ‘iÞ=s, where s is a param-
eter, an initial x is created by letting xi ¼ ‘i þ dv, where v is a random factor uniform on [1, 2]. Then, n additional points are
created by setting xi

j ¼ xj þ d for i ¼ j and xi
j ¼ xj otherwise. The value d also coincides with the initial step-length used by

each method, and in the computational tests, a value of s ¼ 4 is used.
Results for two functions are presented in detail, Table 4 showing results on the Trid function, and Table 5 showing

results on the Sphere function (further results are presented in Section 3). The results are presented as follows. Given
10 repetitions for each setting, the average number of iterations before convergence is reported. In the case where at least
one repetition fails to produce a converged point, the ratio of successful repetitions is given in parentheses. One can observe
that the methods have very different behavior on the two functions, but some trends can be extracted when looking at the
full set of 14 test functions.

Table 6 summarizes the results on each function by giving the methods that yield the best results, as well as the methods
that follow most closely. The categorization is approximate, and methods giving similar results are grouped together.

First, we can note that the results for the Nelder–Mead method are appalling. Only on rare occasions does NM succeed
in locating local optima of functions that have more than four dimensions (the Sphere-function in Table 5 being an excep-
tion). Only for one function (the Rosenbrock) is NM close to being among the best methods (mainly due to the fact that
almost all methods struggle on this particular function). The other simplex search in this test, MDS, performs much better,
yet is still to be found among the worst methods on most functions. As a positive note about NM, it is indeed often the best
method for the case of two-dimensional functions. This supports the findings in [15], in which NM is found to be better
than SW for simple functions when used as an improvement strategy in a Scatter Search.

Two other methods are noticeably absent from Table 6, namely the two derivative free methods that fall outside the
definition of direct search methods. The HPS, in general, performs moderately well. It is, however, always worse than
at least two other methods in the test. The SPSA procedure, which is claimed to be suitable for high-dimensional problems,
suffers from the problem that some of the parameters of the method are sufficiently esoteric to make practical exploitation
difficult [34]. Although theoretical results about the method are good [33], in the tests conducted here, the method failed to
perform well.

One more comment deserves to be made about Table 6, which reinforces the motivation for our development of a Scat-
ter Search based method in Section 3. In all but one case, either CS or ROS is among the best performing methods (the
notable exception being the Sphere function in Table 5, for which SW seems well suited). However, the two methods, CS
and ROS, seem to perform well for different reasons, and typically, one of them is relatively weak when the other is strong,
and vice versa.

Additional insight into the different methods can be gained by altering the starting conditions for each search. Table 7
shows the effect of changing the size of the initial simplex and the initial step length, d, where increasing values of the

Table 4
Results for function 24, Trid, with the number of variables ranging from 2 to 64

n NM MDS CS HJ ROS SW HPS SPSA

2 36.0 72.6 40.3 53.5 39.0 54.0 88.9 3005.7
4 750.5 969.8 172.2 247.9 165.2 178.2 211.6 32171.9
8 (0.0) 14409.0 1230.4 1498.0 646.0 1802.1 5633.0 (0.0)
16 (0.0) (0.0) 8811.5 8981.8 3041.8 16053.8 (0.6) (0.0)
32 (0.0) (0.0) (0.0) (0.0) 14499.4 (0.0) (0.0) (0.0)
64 (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)
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parameter s yield smaller step lengths (and thus, in a way, yield starting points that are further away from a local opti-
mum). Clearly, some methods (such as MDS, HJ, ROS, SW, and SPSA) are better at adapting to the changes and at
adjusting the step length. For the other methods, the initial guess of step length is more critical, and the user must make
sure that a good initial value is found.

As a final note in this section, the effect of increasing the number of problem dimensions has a much larger impact than a
similar change in the error tolerance, �, used in the stopping criterion. One might suspect that doubling the number of
dimensions produces an outcome similar to halving the tolerance for error, since most of the functions examined here
are separable to a certain extent. However, increasing the number of dimensions poses fundamentally different challenges

Table 5
Results for function 39, Sphere, with the number of variables ranging from 2 to 512

n NM MDS CS HJ ROS SW HPS SPSA

2 67.2 31.0 36.3 52.3 25.3 55.3 65.2 767.1
4 283.2 126.6 95.8 129.5 64.9 89.0 104.1 901.1
8 (0.9) 524.2 223.4 284.3 156.0 172.3 177.9 1092.6
16 (0.2) 2385.0 618.4 618.4 371.8 373.5 406.3 1277.3
32 (0.0) 10535.4 1107.2 1256.3 1082.8 784.8 1062.2 1652.4
64 (0.0) 46657.0 2440.1 2784.0 (0.9) 1602.2 3847.2 2536.7
128 (0.1) (0.0) 5128.7 5642.5 (0.7) 3515.3 18226.9 5170.5
256 (0.0) (0.0) 11113.2 12565.9 (0.3) 7401.3 (0.0) (0.0)
512 (0.0) (0.0) 23070.3 25148.6 (0.0) 15770.9 (0.0) (0.0)

Table 6
Summary of the best methods for each function

Function Winner Runner-up

1 CS HJ, SW
7 CS, SW HJ
8 CS, SW HJ
11 ROS CS, SW
12 ROS SW
24 ROS CS, HJ
28 CS, HJ ROS, SW
39 SW CS, HJ
41 ROS MDS
42 CS, HJ MDS
44 CS HJ
51 CS, HJ SW
60 ROS CS, HJ
61 CS HJ

Table 7
Effect of changing the starting conditions, on the function Sphere, with n ¼ 4

s NM MDS CS HJ ROS SW HPS SPSA

2 241.6 176.2 97.7 97.3 88.8 104.6 127.1 1561.3
4 283.2 126.6 95.8 129.5 64.9 89.0 104.1 901.1
6 227.4 125.8 79.7 120.3 64.7 77.0 87.8 791.0
8 107.1 152.6 81.9 127.3 65.7 93.4 98.3 1016.9
10 193.3 146.3 80.1 122.8 71.8 85.3 103.1 1120.7
20 314.2 183.3 75.1 105.1 79.3 96.1 130.9 1301.9
50 945.2 198.4 93.8 76.9 58.4 101.7 224.7 1381.1
100 312.4 140.4 152.9 129.9 98.9 112.2 419.6 1406.9
200 732.4 198.8 270.5 62.8 138.7 121.3 813.4 1430.2
500 1010.1 212.4 669.1 171.6 174.0 125.4 2002.8 1436.2
1000 1272.5 211.6 1334.1 203.0 140.1 140.0 4002.1 1440.4
2000 (0.8) 228.0 2662.9 187.8 195.8 145.7 7982.2 1441.3
5000 2141.8 185.0 6650.4 324.0 128.5 152.8 19949.8 1441.6
10000 1241.4 214.0 13296.8 409.0 95.6 157.8 39888.1 1441.1
20000 1846.2 219.0 26588.8 583.0 200.0 177.5 (0.0) 1432.5
50000 2250.6 230.0 (0.0) 914.0 101.0 180.9 (0.0) 1432.3
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to the direct search methods. Table 8 illustrates that the effect of reducing the error tolerance is not very severe compared to
the effect of increasing the number of variables, as is done in Tables 4 and 5.

3. Scatter Search

The computational study of some well-known direct search methods in the previous section motivates the development
of alternative methods. It was observed that both CS and ROS were able to produce good results compared to the other
methods, but on different problem instances and under different conditions. The aim is now to take advantage of the ideas
found in the metaheuristic called Scatter Search, by joining them with our findings from the computational tests on clas-
sical direct search methods, to create a method that can successfully find local optima of functions having a large number of
dimensions. Scatter Search has already been tested as a global optimizer for box-constrained, non-linear functions in [21],
but only on functions of up to 30-dimensions. Also, Scatter Search has been used in combination with various direct search
methods employed as improvement strategies, e.g. in [15], but again only on functions of 30 or fewer dimensions. In con-
trast, our study presented here focuses on local optima only, and on functions of many variables. The variations of our new
Scatter Search method combine convergence theory for direct search methods [38] with state-of-the-art knowledge from
heuristic solution methods [8] in order to produce an efficient and robust method for handling high-dimensional functions.

A pseudo code description of our Scatter Search method, is given below as Procedure 1. As a prelude, we discuss some
of the key features of the method.

The initialization of Procedure 1 uses the same values as supplied to every other method tested here, using the set of
initial points consisting of the simplex described in Section 2 and the initial step length, d, as specified in the creation of
the simplex. The method has two main parts, one that corresponds to the traditional view of Scatter Search, in steps 3–
13, and one that is mostly a variation of CS (steps 16–19), but specifically adapted to assist the Scatter Search portion.

Part 1 of the method proceeds as follows. A pool of solutions is maintained, containing every solution examined so far,
with the option to discard solutions permanently if they are too far from the current best solution (where ‘‘too far” is
defined as a multiple of d). In step 4, a reference set is built as follows. Having isolated the best point in the pool, xb, filter
the remaining solutions in the pool, focusing only on a number, bc, of solutions that are closest to xb. Among these, first
select the b1 best solutions to include in the reference set. Then, among the remaining solutions, select the b2 solutions that
have recently been found to produce good solutions when used in the subset combination of step 7. This is achieved by
storing, for each solution, x, a number of the most recent solutions created in step 7 when x was a member of the subset.
Taking the average rank in the pool for the recent solutions created by using x, we obtain a measure of how well x can
support the creation of new good solutions, and the b2 best solutions based on this measure is included in the reference set.

Procedure 1. Scatter Search

1: Create a set of initial points.
2: while stopping criterion not met do
3: Isolate the best point found so far, xb.
4: Build a reference set containing points that are close to xb, and, that are either good points themselves or that

have been used to create good points in step 7
5: Select a subset of the reference set, using either Procedure 2 or Procedure 3.
6: Let �x denote the centroid of the subset selected in step 5.
7: Find a new point, x1 that lies d units from xb, in a direction from �x through xb.
8: if x1 is better than xb then

9: Find a new point x2 that lies 2d units from xb, in a direction from �x through xb.
10: In the case that x2 is better than x1, increase d and go to step 14.

Table 8
Effect of adjusting the error tolerance, on the function McCormic, with n ¼ 2

� NM MDS CS HJ ROS SW HPS SPSA

100 4.9 6.0 8.4 7.9 8.5 9.3 9.9 84.6
10�1 9.0 14.0 15.3 17.6 12.7 14.6 22.9 238.8
10�2 14.8 28.2 26.2 32.2 21.6 32.7 37.0 467.7
10�3 22.7 36.6 33.8 41.1 31.7 44.9 55.8 807.0
10�4 31.3 53.0 43.4 53.5 47.0 63.5 84.9 1257.9
10�5 38.3 66.2 56.7 67.8 55.9 77.4 103.0 1820.4
10�6 46.5 84.6 67.8 82.2 64.1 99.1 124.2 2527.2
10�7 55.3 99.4 77.1 93.2 69.2 114.2 148.0 3362.4
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In order to create new solutions, we must select a subset from the reference set. Two different ways of selecting subsets
are outlined in the supporting Procedures 2 and 3, where Procedure 2 relies on randomization, and Procedure 3 is based on
clustering the reference set using the k-clustering algorithm [23].

In the first approach, a subset is created in two steps: first, the size of the subset is decided, and second, solutions from
the reference set are selected at random until the required subset size is obtained. The size of the subset is selected using
biased randomization, where the probabilities of the different sizes are adjusted dynamically based on search history. Spe-
cifically, the most recent solutions created in step 7 are stored, differentiated by the size of the subsets used to produce
them, and the different subset sizes are ranked according to the average rank of the solutions produced by subsets of
the indicated size (i.e., using the same measure for ranking as when selecting the b2 last solutions to enter the reference
set).

The second approach creates subsets simply by dividing the points of the reference set into k clusters. The k-clustering
algorithm we employ is a heuristic that partitions the reference set, such that the sum of distances between each point and
the center of its cluster becomes small. The clusters are then ranked by the quality of the points that they contain, and the
clusters are selected as subsets sequentially. The number of clusters must be at least as large as the number of subsets gen-
erated by each update of the reference set.

Note that for both subset generation approaches, the best solution, xb, is implicitly included in the reference set and in
every subset.

The combination of the subset elements to produce new solutions follows a strategy that contrasts with an idea used in
NM. Instead of improving the worst solution in a set (in NM the set is a simplex), the aim here is to improve the best solu-
tion in the set. Therefore, in step 7, a ray is taken which intersects the centroid of the subset (xb not included) and xb. For a
specific subset S, the new point x1 is

x1 ¼ xb þ d xb �
X
x2S

x
jSj

 !,
xb �

X
x2S

x
jSj

�����
�����: ð4Þ

Procedure 2. Randomized Subset Generation

1: Let the possible subset sizes be labeled from s1 to sM .
2: Sort the sizes according to previous performance (i.e., average rank of points generated in step 7 of Procedure 1).
3: while subset size has not been selected do
4: Cyclically select the next size from the sorted list of sizes, starting with the best ranked size.
5: Reject the current size with a given probability, pSS

6: end while

7: Let si denote the selected subset size, and start with an empty subset.
8: while subset contains less than si points do

9: Add a random member of the reference set to the subset.
10: end while

11: Find a new point x3 that lies 0:5d units from xb, in a direction from �x through xb.
12: In the case that x3 is better than x1, decrease d.
13: end if

14: If an improvement of xb has been found, go to step 3, if a limit on the number of subsets to generate has not been
exceeded, go to step 5.

15: if xb is still the best point found then

16: for a number of steps 6 2n do

17: Extend xb in a cartesian direction (iteratively cycling through each of 2n directions), for a length that
depends on the direction and is limited by d.

18: If an improvement of xb is found in step 17, xb is replaced. The direction-dependent length used in step 17 is
adjusted based on whether or not an improvement was found.

19: end for
20: end if

21: If no improvement of xb was found during steps 7–20, d is reduced.
22: end while
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Procedure 3. Clustering Based Subset Generation

1: if this subset generation procedure has not been executed since the last update of the reference set then

2: Execute the k-clustering algorithm in order to divide the points of the reference set in k clusters.
3: Sort the k clusters according to the quality of each cluster (i.e., the average rank of the points in the cluster).
4: end if

5: If this is the ith time that a subset has been requested since the last time that the reference set was updated, let the
subset be equal to the ith best cluster, according to rank.

If the new point x1 successfully improves on xb, additional search along the same ray may be warranted. Hence, in steps 9
and 11, two solutions x2 and x3 are created in a similar fashion, further exploring the ray. Also, steps 10 and 12 adjust the
step length d by increasing d if x2 is better than x1 or reducing d if x3 is better than x1.

Unless x1 successfully improves xb, the search continues for a given number of steps by selecting different subsets, using the
same reference set. However, if x1 is successful, the reference set is rebuilt before continuing the search. This type of dynamic
update of the reference set derives from the study of [25] where it was found to speed convergence towards a local optimum.

Now consider the case where the Scatter Search has not yet found an improvement of xb after a predetermined number
of subset combinations. At this point it is natural to decrease the step length, d and continue. However, a second part of the
search comes into play first. Part 2 closely resembles CS, in that it searches only in directions corresponding to the cartesian
unit vectors, and in that it dynamically adjusts the step length for each of the directions considered (2n directions are
included: the positive and negative direction of each dimension). The main motivation behind this part, not considering
the fact that CS itself is among the best direct search methods examined, is that the range of directions which can possibly
be generated using the steps 5–7 may at some point become severely reduced. As a rule, several successful combinations are
made consecutively along (approximately) the same direction. In consequence, any subset produced will then have a cen-
troid that lies very close to this direction from xb. In order to allow other search directions to arise, it accordingly becomes
necessary to generate new solutions that are close to xb but lie in a varied selection of directions from xb.

Notice that the close resemblance to CS of Part 2 in the proposed method provides a way to exploit the convergence
theory from [38]. Although steps 5–7 of Procedure 1 suggests using step lengths that depend on the direction, if this rec-
ommendation is ignored the analysis of [38] applies directly. Our empirical tests suggest though, that different step lengths
for different directions are beneficial. It is perhaps interesting that the convergence analysis in [38] can be used to under-
stand the behavior of some of the direct search methods when the number of dimensions increase. The theory shows that
the bound on the angle between the search directions and the gradient may deteriorate as the number of dimensions of the
problem increases. Part 1 of the Scatter Search can be seen as an attempt to counter this phenomenon by using metaheu-
ristic, population-based ideas to generate alternative search directions. At the same time, Part 2 is designed both to feed
Part 1 with new alternative directions and to secure some properties of convergence. Also note that Part 2 of the proposed
method effectively takes the role of an improvement method, as customarily found within the Scatter Search paradigm. The
novelty here though, is that this improvement method is applied very selectively, and only to the current best solution.

Another issue worth mentioning, is that there is always some danger of reproducing solutions (or creating solutions very close to
previously examined solutions). Therefore, no solution is evaluated if it is closer than ad to a previously evaluated solution, where
alpha is a parameter satisfying 0 < a� 1 and d is the current step length. We suggest that such strategies similarly provide improve-
ments for other methods when function evaluations are costly (as in [7] for HJ). See also [11] for alternatives based on tabu search.

One disadvantage of using the Scatter Search framework is that usually the method has more parameters to be tuned than
the simpler classical methods. However, an advantage of using a direct search/Scatter Search method in the context consid-
ered here is that the problem of tuning parameters can be treated as an instance of the same general non-linear optimization
problem we are studying. In other words, we treat the tuning problem as that of minimizing a function that simulates the
application of Scatter Search to a given set of test problems, taking the parameters to be tuned as variables of the function.
Using this ‘‘bootstrapping” idea suggested in [10], we formulate a function whose value is determined by the number of eval-
uations required by our method to solve a small set of selected problem instances, and whose variables correspond to the
parameters of the Scatter Search. Upon starting the Scatter Search with some initial guess of parameters, Procedure 1
can then be used to determine its own parameters. In this case, there was a total of 10 parameters (some additional param-
eters were fixed to the same values as used in the traditional direct search methods), and the Scatter Search (using Procedure
2 to create subsets) quickly found settings vastly better than, and very different from, the initial parameters.

The outcomes found by this bootstrapping approach can be summarized as follows. Interestingly, it proved best to select
the reference set simply as the 360 points closest to the best point, xb, i.e., bc ¼ b1 ¼ 360 and b2 ¼ 0. According to the
parameters found, no points need to be selected based on their use as generators in step 7 of Procedure 1. The maximum
number of subsets used for making combinations in steps 5–13 is 3. If no improvement is found after this, the search con-
tinues by sequentially examining each of the 2n directions allowed in steps 16–19. The factor used in the updates of d was
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fixed at 2, the same value as used in the majority of the other direct search methods. Using these parameters, we examined
the use of Procedure 3 for generation of subsets. Results indicated that a value of k ¼ 6 works well, and this was used in the
computational testing described in Section 3.1.

3.1. Computational results

Using the parameters found by the bootstrap procedure as described above, the Scatter Search procedure was tested on
the same functions as the other methods. Table 9 shows an example where the new Scatter Search approaches, SSR (the
version with randomized subset generation, using Procedure 2) and SSC (the version with clustering based subset gener-
ation, using Procedure 3), are remarkably successful, giving results that are much better than any of the other methods. The
table only reports results for the direct search methods, since as previously mentioned, neither HPS nor SPSA produces
results that are competitive against the best direct search methods. Table 10 gives an exceptional example where SSR
and SSC are not very successful. However, there is only one other method that ever converges within 50,000 evaluations
when the number of dimensions is equal to 64 for this problem.

It is additionally interesting to note that both versions of the Scatter Search adaptations of direct search, SSR and SSC, exhi-
bit very similar behavior on almost all of the test functions. The only two exceptions to this are shown in Tables 11 and 12, and in
both cases the clustering based approach appears to be more robust than the randomized subset generation. For the Zakharov
function (see Table 12) the clustering based subset selection similarly performs better, but notably only when the number of
dimensions exceeds 8. With respect to the Rosenbrock function (see Table 11), the results are more mixed, with SSR producing
best results for the function with 64-dimensions, and SSC giving preferable results for dimensions from 2 to 32.

Table 13 is an update of Table 6, with SSR and SSC being included. Clearly, the Scatter Searches are among the top
contenders for every function, only being surpassed by Rosenbrock’s method in 3 out of the 14 functions, and being
the clear winner in nine cases. Moreover, the dominance of SSR and SSC on certain functions is significant. For example,
on functions 1 (Branin), 28 (SumSquares), and 42 (Rotated High Conditioned Elliptic Function, F3), SSR and SSC solve

Table 9
Results for function 1, Branin, with the number of variables ranging from 2 to 512

n NM MDS CS HJ ROS SW SSR SSC

2 43.8 57.2 51.6 67.9 44.3 71.1 57.1 59.4
4 224.0 188.4 116.0 171.5 116.6 143.5 102.8 103.3
8 (0.0) 663.7 290.5 394.8 282.9 341.1 197.1 202.8
16 (0.0) 3015.7 680.5 979.9 647.8 928.9 406.6 374.2
32 (0.0) 11516.6 1550.7 (0.9) 1542.2 2032.8 779.7 783.2
64 (0.0) 46751.7 3628.4 (0.9) 6544.6 4558.6 1636.6 1626.4
128 (0.0) (0.0) 8031.5 (0.8) 28666.7 9922.3 3448.8 3443.7
256 (0.0) (0.0) 18172.5 (0.6) (0.1) 24043.6 7173.4 7184.6
512 (0.0) (0.0) (0.9) (0.7) (0.0) (0.2) 15206.9 15221.8

Table 10
Results for function 41, Shifted Schwefel’s Problem 1.2 (F2), with the number of variables ranging from 2 to 128

n NM MDS CS HJ ROS SW SSR SSC

2 48.8 57.4 79.4 102.2 71.2 106.2 90.8 89.2
4 351.4 218.6 324.3 459.3 255.8 243.6 322.4 349.0
8 (0.0) 870.9 1708.7 2685.2 711.1 1404.5 1404.1 1313.1
16 (0.0) 3435.0 7842.5 10980.0 2428.1 6109.4 5085.8 4280.8
32 (0.0) 14710.8 34937.3 (0.7) 7822.9 24328.7 15512.2 14880.8
64 (0.0) (0.0) (0.0) (0.0) 25145.7 (0.0) (0.2) (0.1)
128 (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

Table 11
Results for the two Scatter Search variations on function 11, Rosenbrock, with the number of variables ranging from 2 to 128

n SSR SSC

2 606.5 313.2
4 13410.0 2256.4
8 25831.6 8165.6
16 (0.9) 12500.4
32 (0.9) 21397.7
64 39193.2 (0.2)
128 (0.0) (0.0)
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the 512-dimensional problem using fewer function evaluations than required by the second best method (CS) to solve the
much smaller 256-dimensional problem.

4. Conclusions and future research

The study of this paper makes two main contributions. First, we conduct a computational examination of several exist-
ing derivative free optimization methods, with a particular focus on direct search methods. Our objective is to investigate
the behavior on high-dimensional problems when only a local optimum is sought. The results reveal that some well-known
and frequently used methods have severe limitations, especially when the functions at hand have many dimensions. We also
found that two of the simplest methods, the Compass Search method and Rosenbrock’s method (with the improvement by
Palmer, [28]), seem to perform relatively well, under the assumptions present.

Second, we developed a new direct search/Scatter Search method based on combining insights from a computational
study of traditional direct search methods with ideas from the Scatter Search metaheuristic. The new method achieved sig-
nificantly improved results for the majority of the functions tested, and obtained results comparable to those obtained by
the best previous method for the other functions.

Our study appears to be the first to demonstrate the merit of using clustering based subset generation techniques in Scat-
ter Search. The quality of the results obtained motivates further examination of the processes for embedding clustering
within Scatter Search, both for continuous and discrete optimization. Each of the two variations of the Scatter Search
we implemented embody theoretical convergence properties, but our computational results show that such theoretical
properties are not necessarily meaningful in practice. In particular, although each of CS, HJ, and MDS have been shown
to have similar convergence properties [38], the latter performs overall much worse than the other two methods.

Some limitations of this work should be noted. Due to the vast number of direct search methods described in the liter-
ature, it is difficult to carry out extensive studies that include all the variations. Hence, some recent developments are not
considered here. Among these is the Mesh Adaptive Direct search [3] which is claimed to extend and improve on Generalized
Pattern Search. MDS, CS, and HJ constitute the pattern search methods considered in the study in Section 2. However, in [1]
the authors observe that their approach falters when large numbers of decision variables are present. Also, we did not con-
sider parallel versions of the direct search methods, such as Parallel Pattern Search. However, the authors of [17] state that
Parallel Pattern Search is intended to be useful for problems with a small number of variables, in the range from 10 to 50.

Similarly, methods that primarily focus on global optimization are not included. A prominent example is the DIRECT
(DIviding RECTangles) method, although there is likewise an indication that this method may not be suited for high-
dimensional problems [18].

Table 12
Results for the two Scatter Search variations on function 12, Zakharov, with the number of variables ranging from 2 to 128

n SSR SSC

2 49.2 49.3
4 168.1 173.2
8 1060.9 1101.1
16 6827.8 4030.5
32 32626.4 16167.1
64 (0.0) (0.1)
128 (0.0) (0.0)

Table 13
Summary of the best methods, including SSR and SSC, for each function

Function Winner Runner-up

1 SSR, SSC CS
7 SSR, SSC CS, SW
8 SSR, SSC CS, SW
11 ROS, SSR, SSC CS, SW
12 ROS SSC
24 ROS SSR, SSC
28 SSR, SSC CS, HJ
39 SSR, SSC SW
41 ROS MDS, SSR, SSC
42 SSR, SSC CS, HJ
44 SSR, SSC CS
51 SSR, SSC CS, HJ
60 ROS, SSR, SSC CS, HJ
61 SSR, SSC CS
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One reason for omitting several of the newer versions of pattern search is that they are not in common use as subsolvers
for global optimization approaches. Although they may have several interesting properties in terms of theoretical conver-
gence, they do not yet have the same widespread acceptance by practitioners based on demonstrated merit in actual per-
formance. Our work demonstrates that several of the commonly used direct search methods have severe limitations in
terms of finding local optima of high-dimensional problems, and that alternatives should be considered. Beyond this,
we have shown that one can combine features of the methods having established convergence theory with well-known ideas
from metaheuristic research to create robust and highly efficient hybrid methods.

Future research will undoubtedly profit by a more thorough examination of the balance between intensification and
diversification of the search, as by drawing on strategies proposed in tabu search for exploiting the tradeoffs between these
interrelated functions. Within the present context we anticipate that a variant of a multi-start strategy can prove useful, by
performing iteratively deeper Scatter Search runs, starting from points that are filtered based on merit and on proximity to
previously explored regions of the search space.

Acknowledgement

We thank three anonymous referees, whose comments have led to improvements in this paper.

Appendix A

We now state the details of functions 44, 60, and 61. Function 44, F5 from [35], is taken as

f ðxÞ ¼ max
i
fjAixjg; ð5Þ

where x 2 ½�50; 100�n and A is taken to be the n� n upper left submatrix of B being generated using Matlab as follows:

randð0state 0;0Þ; B ¼ roundðrandð512Þ � 1000� 500Þ:
Function 60 is as follows:

f ðxÞ ¼ gðxÞ þ rðx� 1Þ; ð6Þ
where rðxÞ is the Rosenbrock function (3), and

gðxÞ ¼
Xn

i¼0

bjxijc; ð7Þ

whereas function 61 is

f ðxÞ ¼ gðxÞ þ
Xn

i¼0

log2ðxi þ 1Þ ð8Þ

and where x 2 ½�5; 10�n for both Function 60 and 61. Each of the functions 44, 60, and 61 have a single local optimum at
x� ¼ ½0; . . . ; 0� with a value of f ðx�Þ ¼ 0.

Appendix B

Here follows complete results for all functions and all methods tested (Tables 14–27).

Table 14
Results for function 1, Branin

n NM MDS CS HJ ROS SW HPS SPSA SSR SSC

2 43.8 57.2 51.6 67.9 44.3 71.1 88.6 1142.7 57.1 59.4
4 224.0 188.4 116.0 171.5 116.6 143.5 155.2 1406.9 102.8 103.3
8 (0.0) 663.7 290.5 394.8 282.9 341.1 272.9 1538.4 197.1 202.8
16 (0.0) 3015.7 680.5 979.9 647.8 928.9 934.9 1926.5 406.6 374.2
32 (0.0) 11516.6 1550.7 (0.9) 1542.2 2032.8 (0.8) 2819.7 779.7 783.2
64 (0.0) 46751.7 3628.4 (0.9) 6544.6 4558.6 5664.5 (0.7) 1636.6 1626.4
128 (0.0) (0.0) 8031.5 (0.8) 28666.7 9922.3 21469.0 (0.0) 3448.8 3443.7
256 (0.0) (0.0) 18172.5 (0.6) (0.1) 24043.6 (0.0) (0.0) 7173.4 7184.6
512 (0.0) (0.0) (0.9) (0.7) (0.0) (0.2) (0.0) (0.0) 15206.9 15221.8
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Table 15
Results for function 7, Booth

n NM MDS CS HJ ROS SW HPS SPSA SSR SSC

2 35.2 56.5 71.4 106.9 51.3 75.4 103.8 957.9 63 70.2
4 316.3 177.6 189.5 274.6 150.7 189.8 172.8 1183.1 203.1 192.7
8 (0.3) 760.3 491.3 640.7 387.0 510.9 525.2 1701.6 422.8 413
16 (0.0) 3217.2 1163.3 1505.7 915.3 1284.6 (0.9) 2660.8 809.4 737.2
32 (0.0) 13946.4 2643.8 2872.2 2512.3 2878.5 (0.7) 5373.6 1732.4 1436.9
64 (0.0) (0.0) 6040.0 6304.9 9873.0 6148.3 (0.7) 13896.5 3154.8 3148.5
128 (0.0) (0.0) 13403.9 16967.0 (0.8) 13015.3 (0.5) 41173.0 6737.8 7516.3
256 (0.0) (0.0) 29754.9 41187 (0.0) 27799.6 (0.0) (0.0) 16293.8 16915.3
512 (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) 36840.3 38635.4

Table 16
Results for function 8, Matyas

n NM MDS CS HJ ROS SW HPS SPSA SSR SSC

2 35.5 221.4 57.2 71.4 46.2 59.7 98.1 (0.1) 60.3 47.6
4 282.5 999.4 185.4 236.6 141.5 240.3 316.8 (0.0) 209.9 167.2
8 (0.0) 5031.4 479.3 659.7 334.0 582.4 791.0 (0.0) 432.4 380.0
16 (0.0) 21069.7 1273.0 1816.3 899.5 1589.0 2503.4 (0.0) 1109.8 902.1
32 (0.0) (0.0) 2926.0 4376.6 2356.6 3614.0 5329.8 (0.0) 2422.8 1834.6
64 (0.0) (0.0) 6961.2 9928.1 6351.4 8433.8 20274.1 (0.0) 3854.2 3827.1
128 (0.0) (0.0) 15601.1 22486.5 30923.4 18173.9 (0.0) (0.0) 8575.0 9687.9
256 (0.0) (0.0) 35836.5 (0.5) (0.0) 39372.8 (0.0) (0.0) 24207.0 24903.1
512 (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

Table 17
Results for function 11, Rosenbrock

n NM MDS CS HJ ROS SW HPS SPSA SSR SSC

2 466.4 (0.8) 17083.2 (0.7) 237.8 9434.1 (0.0) (0.0) 606.5 313.2
4 2290.3 (0.0) (0.8) (0.4) 1125.0 25580.4 (0.1) (0.0) 13410.0 2256.4
8 (0.0) (0.0) (0.4) (0.0) 2761.9 (0.2) (0.0) (0.0) 25831.6 8165.6
16 (0.0) (0.0) (0.0) (0.0) 7820.2 (0.0) (0.0) (0.0) (0.9) 12500.4
32 (0.0) (0.0) (0.0) (0.0) 21183.1 (0.0) (0.0) (0.0) (0.9) 21397.7
64 (0.0) (0.0) (0.0) (0.0) (0.1) (0.0) (0.0) (0.0) 39193.2 (0.2)
128 (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

Table 18
Results for function 12, Zakharov

n NM MDS CS HJ ROS SW HPS SPSA SSR SSC

2 53.4 43.8 46.9 69.8 35.9 70.7 87.3 779.7 49.2 49.3
4 339.1 161.0 174.9 260.0 134.3 161.7 150.7 5867.0 168.1 173.2
8 (0.2) 1037.7 1535.9 1930.1 477.6 630.8 7050.5 (0.3) 1060.9 1101.1
16 (0.0) 10872.5 21579.7 26317.6 1784.2 3217.7 (0.7) (0.0) 6827.8 4030.5
32 (0.0) (0.0) (0.0) (0.0) 7696.0 21876.6 (0.0) (0.0) 32626.4 16167.1
64 (0.0) (0.0) (0.0) (0.0) 28022.2 (0.0) (0.0) (0.0) (0.0) (0.1)
128 (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

Table 19
Results for function 24, Trid

n NM MDS CS HJ ROS SW HPS SPSA SSR SSC

2 36.0 72.6 40.3 53.5 39.0 54.0 88.9 3005.7 39.5 43.0
4 750.5 969.8 172.2 247.9 165.2 178.2 211.6 32171.9 166.0 152.7
8 (0.0) 14409.0 1230.4 1498.0 646.0 1802.1 5633.0 (0.0) 676.3 563.5
16 (0.0) (0.0) 8811.5 8981.8 3041.8 16053.8 (0.6) (0.0) 4357.8 3447.5
32 (0.0) (0.0) (0.0) (0.0) 14499.4 (0.0) (0.0) (0.0) (0.8) (0.3)
64 (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)
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Table 20
Results for function 28, SumSquares

n NM MDS CS HJ ROS SW HPS SPSA SSR SSC

2 42.7 39.0 43.1 61.6 33.3 63.5 88.7 846.6 41.4 40.4
4 405.9 169.8 119.3 157.7 102.5 117.4 130.8 832.1 77.7 81.2
8 (0.4) 692.2 292.6 362.6 247.6 347.5 391.5 846.6 146.3 146.2
16 (0.0) 3255.4 683.8 798.1 743.1 1262.9 (0.4) 2463.8 298.3 313.0
32 (0.0) 15233.0 1543.3 1746.3 2507.4 4751.7 (0.2) 11616.7 622.5 647.5
64 (0.0) (0.0) 3457.0 3791.5 15871.6 18346.8 (0.0) (0.0) 1369.0 1348.4
128 (0.0) (0.0) 7572.9 8245.4 (0.0) (0.0) (0.3) (0.0) 2840.7 2808.8
256 (0.0) (0.0) 16411.9 17771.5 (0.0) (0.0) (0.0) (0.0) 6057.1 6105.4
512 (0.0) (0.0) 35319.0 38177.1 (0.0) (0.0) (0.0) (0.0) 12866.2 13021.4

Table 21
Results for function 39, Sphere

n NM MDS CS HJ ROS SW HPS SPSA SSR SSC

2 67.2 31.0 36.3 52.3 25.3 55.3 65.2 767.1 39.4 34.0
4 283.2 126.6 95.8 129.5 64.9 89.0 104.1 901.1 63.8 63.3
8 (0.9) 524.2 223.4 284.3 156.0 172.3 177.9 1092.6 114.7 120.6
16 (0.2) 2385.0 618.4 618.4 371.8 373.5 406.3 1277.3 227.2 232.8
32 (0.0) 10535.4 1107.2 1256.3 1082.8 784.8 1062.2 1652.4 462.5 463.2
64 (0.0) 46657.0 2440.1 2784.0 (0.9) 1602.2 3847.2 2536.7 958.0 983.9
128 (0.1) (0.0) 5128.7 5642.5 (0.7) 3515.3 18226.9 5170.5 1979.4 2111.7
256 (0.0) (0.0) 11113.2 12565.9 (0.3) 7401.3 (0.0) (0.0) 4236.8 4258.6
512 (0.0) (0.0) 23070.3 25148.6 (0.0) 15770.9 (0.0) (0.0) 8890.4 8890.2

Table 22
Results for function 41, Shifted Schwefel’s Problem 1.2 (F2)

n NM MDS CS HJ ROS SW HPS SPSA SSR SSC

2 48.8 57.4 79.4 102.2 71.2 106.2 137.0 10072.2 90.8 89.2
4 351.4 218.6 324.3 459.3 255.8 243.6 368.4 18630.8 322.4 349.0
8 (0.0) 870.9 1708.7 2685.2 711.1 1404.5 (0.7) 23913.9 1404.1 1313.1
16 (0.0) 3435.0 7842.5 10980.0 2428.1 6109.4 (0.4) (0.8) 5085.8 4280.8
32 (0.0) 14710.8 34937.3 (0.7) 7822.9 24328.7 (0.0) (0.0) 15512.2 14880.8
64 (0.0) (0.0) (0.0) (0.0) 25145.7 (0.0) (0.0) (0.0) (0.2) (0.1)
128 (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

Table 23
Results for function 42, Shifted Rotated High Conditioned Elliptic Function (F3)

n NM MDS CS HJ ROS SW HPS SPSA SSR SSC

2 91.5 118.2 129.1 196.6 256.4 (0.0) (0.0) (0.0) 133.4 160.7
4 (0.9) 421.8 291.1 419.4 4046.7 (0.0) (0.0) (0.0) 201.3 218.0
8 (0.0) 1596.2 666.3 918.3 (0.9) (0.0) (0.0) (0.0) 346.0 370.6
16 (0.0) 6129.0 1422.7 1848.3 (0.0) (0.0) (0.0) (0.0) 612.9 610.8
32 (0.0) 24353.0 3027.9 3855.6 (0.0) (0.0) (0.0) (0.0) 1193.3 1177.1
64 (0.0) (0.0) 6292.1 7809.5 (0.0) (0.0) (0.0) (0.0) 2283.1 2301.1
128 (0.0) (0.0) 12865.8 15981.4 (0.0) (0.0) (0.0) (0.0) 4650.3 4643.6
256 (0.0) (0.0) 26436.7 32546.0 (0.0) (0.0) (0.0) (0.0) 9441.1 9441.1
512 (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) 18557.7 18557.7

Table 24
Results for function 44, Modified Schwefel’s Problem 2.6 with Global Optimum on Bounds (F5)

n NM MDS CS HJ ROS SW HPS SPSA SSR SSC

2 160.3 142.2 151.9 215.6 129.6 222.7 307.5 (0.0) 131.8 130.4
4 (0.0) (0.9) 376.6 504.7 355.5 370.6 (0.4) (0.0) 226.1 229.4
8 (0.0) (0.2) 874.1 1057.1 1355.7 (0.0) (0.0) (0.0) 392.9 388.9
16 (0.0) (0.5) 2040.2 2492.3 (0.9) (0.0) (0.0) (0.0) 771.3 776.7
32 (0.0) (0.8) 4455.5 5533.3 (0.0) (0.0) (0.0) (0.0) 1528.3 1541.9
64 (0.0) (0.0) 8676.9 9873.5 (0.0) (0.0) (0.0) (0.0) 3068.5 3097.8
128 (0.0) (0.0) 18732.2 (0.0) (0.0) (0.0) (0.0) (0.0) 6879.1 6937.4
256 (0.0) (0.0) 45051.3 (0.0) (0.0) (0.0) (0.0) (0.0) 13638.4 13722.7
512 (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) 29280.9 28671.2
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